

TGS 821 - Special Sensor for Hydrogen Gas

Features:

- * High sensitivity and selectivity to hydrogen gas
- * Good repeatability in measurement and excellent stability

* Uses simple electrical circuit

* Ceramic base resistant to severe environment

Applications:

- * Hydrogen gas detection for:
 - transformer maintenance
 - batteries
 - steel industry usage
 - etc.

The sensing element of Figaro gas sensors is a tin dioxide (SnO_2) semiconductor which has low conductivity in clean air. In the presence of a detectable gas, the sensor's conductivity increases depending on the gas concentration in the air. A simple electrical circuit can convert the change in conductivity to an output signal which corresponds to the gas concentration.

The **TGS 821** has high sensitivity and selectivity to hydrogen gas. The sensor can detect concentrations as low as 50ppm, making it ideal for a variety of industrial applications.

The figure below represents typical sensitivity char-acteristics, all data having been gathered at standard test conditions (see reverse side of this sheet). The Y-axis is indicated as *sensor resistance ratio* (Rs/Ro) which is defined as follows:

Rs = Sensor resistance of displayed gases at various concentrations

Ro = Sensor resistance at 100ppm of hydrogen

The figure below represents typical temperature and humidity dependency characteristics. Again, the Y-axis is indicated as *sensor resistance ratio* (Rs/Ro), defined as follows:

Rs = Sensor resistance at 100ppm of hydrogen at various temperatures/humidities Ro = Sensor resistance at 100ppm of hydrogen at 20°C and 65% R.H.

Temperature/Humidity Dependency:

Apollosense Ltd

Shenzhen:

Adress : Room 712, Huaneng Building, Shennan Zhong Road, Shenzhen 518031, China Tel : (86-755) 83680810 83680820 83680830 83680860

Fax: (86-755) 83680866

Hong Kong: Adress : Unit 1502, Hollywood Plaza, 610 Nathan Road, Mong Kok, Kln., H.K. Tel : (852) 2737 0903 Fax : (852) 2737 0938 Email : sales@apollounion.com

Sensitivity Characteristics:

100 Air Methane Ethanol 10 Carbon monoxide Rs/Ro 1 Hydrogen 0.1 0.01 1000 10000 10 100 Concentration (ppm)

Structure and Dimensions:

Pin Connection and Basic Measuring Circuit:

The numbers shown around the sensor symbol in the circuit diagram at the right correspond with the pin numbers shown in the sensor's structure drawing (*above*). When the sensor is connected as shown in the basic circuit, output across the Load Resistor (V_{RL}) increases as the sensor's resistance (Rs) decreases, depending on gas concentration.

Basic Measuring Circuit:

SnO2 is sintered to form a thick film on

the surface of an alumina ceramic tube which contains an internal heater.

100 mesh SUS 316 double gauze

(1) Sensing Element:

(2) Sensor Base:

(**3**) Flame Arrestor:

Alumina ceramic

Standard Circuit Conditions:

Item	Symbol	Rated Values	Remarks
Heater Voltage	Vн	5.0±0.2V	AC or DC
Circuit Voltage	Vc	Max. 24V	DC only Ps≤15mW
Load Resistance	R∟	Variable	$0.45 k\Omega$ min.

Electrical Characteristics:

Item	Symbol	Condition	Specification
Sensor Resistance	Rs	Hydrogen at 100ppm/air	1kΩ ~ 10kΩ
Change Ratio of Sensor Resistance	Rs/Ro	Log[Rs(H2 100ppm)/Rs(H2 1000ppm)] Log (1000ppm/100ppm)	0.60 ~ 1.20
Heater Resistance	Rн	Room temperature	$38.0\pm3.0\Omega$
Heater Power Consumption	Рн	VH=5.0V	660mW (typical)

Standard Test Conditions:

TGS 821 complies with the above electrical characteristics when the sensor is tested in standard conditions as specified below:

 $\begin{array}{ll} \mbox{Test Gas Conditions:} & 20^{\circ}\pm2^{\circ}C, \mbox{65}\pm5\% R.H. \\ \mbox{Circuit Conditions:} & Vc = 10.0\pm0.1V \mbox{ (AC or DC)}, \\ \mbox{VH} = 5.0\pm0.05V \mbox{ (AC or DC)}, \\ \mbox{RL} = 4.0k\Omega\pm1\% \\ \end{array}$

Preheating period before testing: More than 7 days

Sensor Resistance (Rs) is calculated by the following formula:

$$Rs = \left(\frac{V_{C}}{V_{RL}} - 1\right) \times R_{L}$$

Power dissipation across sensor electrodes (Ps) is calculated by the following formula:

$$\mathsf{Ps} = \frac{\mathsf{Vc}^2 \times \mathsf{Rs}}{(\mathsf{Rs} + \mathsf{RL})^2}$$

Apollosense Ltd

Shenzhen: Adress : Room 712, Huaneng Building, Shennan Zhong Road, Shenzhen 518031, China Tel : (86-755) 83680810 83680820 83680830 83680860 Hong Kong: Adress : Unit 1502, Hollywood Plaza, 610 Nathan Road, Mong Kok, Kln., H.K. Tel : (852) 2737 0903 Fax : (852) 2737 0938 Email : sales@apollounion.com